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ABSTRACT 

A boundary integral solution to the two-dimensional, free-surface water wave problem is 
presented. The mathematical formulation involves application of potential theory and 
appropriate initial and boundary conditions to resolve the progression of the linear free-surface 
waves. The solution to the potential flow problem is represented, through Green's theorem, by a 
boundary integral method that is approximated via linear boundary panels. The resulting system 
of algebraic equations is solved for required flow parameters. The free surface is tracked at each 
time level by numerical integration of the linearized free-surface boundary conditions. Despite 
the use of linear panels, numerical results compare favorably with the exact linear theory and 
indicate that the computational scheme is able to track the development and propagation of steep 
waves over long periods oftime. An analysis is also provided to aid in the development and 
numerical implementation of artificial or perfectly absorbing boundary conditions at the vertical, 
imaginary, truncated boundaries. 
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A BOUNDARY INTEGRAL METHOD 
FOR TWO-DIMENSIONAL WATER WAVES 

INTRODUCTION 

Recent experiments by Kuria et al./ as well as earlier research by other investigators,2-
9 

have shown that water wave interaction can have a significant hydrodynamic effect on marine 

structures. Bodies of water always have surface waves, which are due to the effects of forces 

acting on the fluid and trying to deform it. The size and form of a surface wave will depend on the 

size and magnitude of the wave-generating mechanism, while its propagation will be influenced by 

gravity and surface tension. 

The theory of water waves is provided in great detail by Dean and Dalrymple.2 The 

analytical solution to the linear potential flow equations assumes that the vertical lateral boundary 

conditions are periodic in space and time. While it is fairly easy to implement the spatial periodic 

boundary condition, its quite difficult to numerically implement the temporal periodicity condition. 

Longuet-Higgins and Cokelee used coordinate transformation to convert the computational domain 

to a simple closed contour. Vinje and Brevig4 have solved the nonlinear two-dimensional wave 

problem in physical space. To satisfy periodic conditions at the truncated, lateral boundaries, they 

imposed periodicity in both velocity potential and stream function. A more general boundary 

integral solution to the nonlinear two-dimensional wave equation was provided by Sen et al.5 In 

this work, the authors used linear panels to simulate motions of two-dimensional large floating 

bodies in waves. 

To avoid the problems associated with lack of continuity at linear panel boundaries, Sen6 

developed a cubic-spline boundary integral method. With a cubic representation of the velocity 

potential in a panel, it is possible to enforce continuous velocity at the panel boundaries and corner 

points. Xti7 used the boundary integral method to obtain a numerical solution to the fully nonlinear 

three-dimensional water wave problem in a tank. This three-dimensional boundary element 

method is based on biquadratic isoparametric curvilinear elements with an efficient adaptive 

numerical quadrature scheme. After every three or four time steps, Chebyshev smoothing was 

used in alternating directions to remove the three-dimensional wave instabilities. 

In the research documented here, the boundary integral method is used to simulate the 

linear, two-dimensional wave equation in the time domain. This computational formulation is 

based on Green's formula for harmonic functions applied to a truncated fluid domain. To obtain a 
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system of algebraic equations from the Fredholm integral equations, the proposed approach applies 

the zeroth-order linear panels along the control boundaries. The resulting system of equations is 

then solved for the normal velocity and velocity potential. The tangential velocity is obtained by 

numerical differentiation of the velocity potential. The free surface is advanced in time by 

numerical integration of the linearized free-surface kinematic and dynamic boundary conditions. 

To start the solution, an excitation Airy wave velocity potential is imposed on the leading upstream 

vertical boundary. At the downstream truncation boundary, either the spatial and temporal 

periodicity condition or the Sommerfeld radiation boundary condition is applied. 

2 



MATHEMATICAL FORMULATION 

The theory and governing physics of gravity water waves and free-surface flow are 

presented in Dean and Dalrymple.2 In the physical geometry defined in figure 1, boundary dDe
2 

is 

the location of the wave generator and dDe
1 

is a fictitious boundary placed there to make the 

computational domain finite. Boundary ()DF is the free surface and aDD represents a horizontal, 

nonporous solid boundary. 

The physical coordinates (x ,y) represent a point with a corresponding velocity, ( u, v ). 

The velocity components are related to the velocity potential </>through 

(1) 

y 
1J(x, t) 

()Dei 

d 
D 

X=O X=L 

Figure 1. Geometric Definitions 

We give the following definitions of the domain D and its boundary ()D: 
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D = {cx,y) I 0< x < L ,- d < y < ry(x,t)}, 

dDF = { (X' y) I 0 ~ X ~ L ' y = 77( X' t)} ' 
dDc, = {cx,y) I x = L ,- d ~ y ~ ry(x,t)}, (2) 

dDD = {cx,y) I o ~ x ~ L , y = -d}, 
dDc2 = {cx,y) I x = o ,-d ~ y ~ ry(x,t)}. 

With the assumption of irrotational motion and an incompressible fluid, a velocity potential exists 

that must satisfy the governing equation of mass conservation. In terms of the velocity potential, 

the continuity equation leads to the Laplace equation, which must hold throughout the fluid: 

(3) 

The free-surface kinematic boundary condition requires that a fluid particle on the surface 

remain on the free surface. That is, 

which, on expanding, gives 

~{y -ry(x ,t)} = 0 on y(t)= ry(x,t) , 
dt 

dry d¢> d¢> dry = ---- on y( t) = 71( x, t) . at ay ax ax 

The pressure within the fluid domain D and on all the boundaries must conform to Bernoulli ' s 

equation. The Bernoulli equation is therefore used to obtain the dynamic free-surface boundary 

condition. In its irrotational form, this boundary condition is 

d¢> 1 d¢ - d¢ 
[( J

? ( J2] at = - 2 dx + dy - gT] on y( t) = 71( x, t) . 

(4) 

(5) 

(6) 

On the rigid, nonporous bottom boundary, there can be no fluid velocity component normal 

to the boundary. The flow must be entirely tangential to the boundary, so that the bottom surface 

is always a streamline. This can be mathematically expressed as 

4 



d¢ = 0 ::l on dDn , 
dn 

(7) 

where n is the unit normal pointing outward from the computational domain. 

5/(6 blank) 



NUMERICAL ANALYSIS 

Solutions to the harmonic velocity potential may be represented by its boundary data. 

In a two-dimensional region, Green's second identity gives 

where J/ an denotes the derivative along the outward facing normal non dD, and 

G(x, ~)= In R(x , ~) is the kernel Green's function, where 

(8) 

(9) 

is the distance between the points X and ~ on the boundary. The expression x = xi + y j defines 

any point in D = D + ()D, ~ = ~i + ryj defines any point on ()D, and 

{

n, x E smooth part of JD 
Q( x) = internal angle, x E comer of ()D 

2n, xED 
(10) 

In boundary integral calculations, the computational domain is decomposed into many 

panels and an interpolation polynomial is used to approximate the velocity potential and normal 

velocity on each panel. The accuracy of the computational technique is improved either by an 

increase in the number of computational panels or by the order of the interpolation polynomial. If 

N is the order of the interpolation polynomial and N 1 ( ~) represent the cardinal functions, then the 

velocity potential at any point on the computational domain is approximated by 

N 

¢(~) = LN/~) cp~ 
)= 1 

and (1 1) 

where s indicates the particular time level, i.e., t = s(~t) (M is the time step and N/~) are 

appropriate basis functions). When linear panels are used, ¢ and J¢/ an are ultimately assumed 
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to be constant in each panel. In this work, it will therefore be assumed that N / ~) are always 

constant over every boundary panel. When equation (11) is substituted into equation (8), the finite 

dimensional approximation to t/J(x) is found to be 

If we restrict X E aD and define a projection (collocation) operator, PN, such that 

the following approximation is obtained: 

N N 

PNt/JN(x)= PN I,.N/x) cp; = I,.N/x:)cp; = cp: , (13) 
j =l j =l 

where x; E dD are the boundary collocation points and 

(14) 

Applying the definition of PN to equation (12), we obtain 

(15) 

To be able to evaluate the integrals in equation (15), we partition dD into N panels (line 

segments) such that 

N 

aD =UaD; (16) 
i=l 
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and 

{
1, ~ E JD1 

N (~) = 
1 0, otherwise. 

The integrals in equation (15) can therefore be written as 

and, likewise, 

I G(x,~)N;(~)ds(~) = I G(x , ~)ds(~) . 
()D ()D j 

The expressions on the right-hand side of equation (15) may now be evaluated as 

and 

where 

-lG =- k . ' 1C j 

G kJ = I G(x,~)ds(~)~x=x: , 
()D j 

H k;· = I ~G(x,~)ds(~)J _ . , an X - X k 

()D j 

(17) 

(18) 

(19) 

(2 1) 

(22) 
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and Q(x:) = n. For our purposes, the collocation (control) points x; will be chosen to be 

midpoints of dDk. 

Upon substituting equations (13), (20) and (21) into equation (15), the following system of 

equations is obtained: 

N N 

n<p%=IHk1<p; -IGk1 vr;, 1~k~N, 
J=l j =l 

or, equivalently, 

N N N 

n I 8k1<p; =I Hk1<p; - I Gk1 lfl;, 1 ~ k 5:. N , 
J=l J=l j =l 

which may be written as 

N N 

If! kJ<p ~ - IG kJ lfl ~ = 0, 1 ~ k ~ N, 
J=l j= l 

where 

We next particularize the system of equations relative to two-dimensional wave generation in a 

rectangular cavity. The domain is given in figure 1. We partition the respective parts of ()D as 

follows: 

()DF 1 ~ j ~ np1 ¢ - specified , 

dDcl np1 + 1 ~ j 5:. np2 ¢ - specified , 

()DD np2 + 1 5:. j ~ np3 ~ - specified , 

dDc2 np3 + 1 5:. j ~ N ¢ - specified , 

10 

(23) 

(24) 

(25) 

(26) 

(27) 



where npl, np2- npl, np3- np2, and N- np3 are, respectively, the number of boundary panels on 

()DF, dDc
1

, dDn, and dDc
2

• 

Substituting the governing information given in equation (27) into equation (25), including 

the known boundary conditions, results in the following system of algebraic equations: 

np3 np2 N 

'2.Jikj cp ~ - LGkj ljf~ - LGkjljf~ 
j=np2+ I j= I j=np3+ I 

(28) 
np2 N np3 

=-Lfikjcp~ - Lfikjcp~ + LGkjll'~' l~k ~N ' 
j= I j=np3+ I j=np2+ I 

which may be written symbolically as 

Axs = b , (29) 

where the elements of X
5 are given by 

xs = (30) 

The elements of A are 

11 



r-Gu -Gl,np2 Hl ,np2+1 Hl,np3 -Gl,np3+1 -GIJI 

Hnp2,np2+ 1 Hnp2,np3 

A= [ B:,~i"'" ~"'':+lpp3] (31) 

Hnp3,np2+ 1 Hnp3,np3 

Hnp3+ 1,np2+1 H np3+ 1,np3 

-GN,1 -GN,np2 
H N,np2+1 H N,np3 

-GN,np3+ 1 -GN,N 

and the elements of b are 

np2 np3 N 

b k =-Iflkj cp ~ + LGk/Y~ - Iflkj (/J ~, l-5,k-5, N 0 
(32) 

j= 1 p np2+ 1 j=np3+ 1 

We note that the sub-block 

(33) 

is the only portion of A that has n subtracted along its main diagonal. 

From Nachbin,8 the matrix, as defined by equation (26), must have the following property* 

for any fixed k -7 i: 

N N 

H;; =-"LH;1 =-"LH;1 = H;;-n (34) 
j=l }=1 
j# j# 

Therefore, 

·The code we used in our simulations was modified to reflect this property. 

12 



N 

Hii =-IH;1 +n 
j=l 
j # 

(35) 

If equation (25) is to model a constant potential ¢ in each panel, then we must have vr; = 0 , and 

therefore 

N 

Iirkj <pf =o 
J=l 

for any constant vector <p; 0 Equations (34) and (35) follow immediately from equation (36)0 

Equation (35) provides a convenient way of evaluating the second part of equation (22) when 

k=jo 

In order to solve the system of algebraic equations in equation (29), expressions are 

required for the integrals in equation (22)0 To maintain legibility, the following function 

definitions are introduced: 

'I'(x) = J lnR ds(~) 
JDJ 

and 

ct>(x) = J i_(lnR)ds(~) 0 

JD . dn 
J 

From figure 2, it can be seen that on ani' r =X-~= (x- ~)i + (y- T])j' and therefore 

R = (r 0 r)Yz = [(x- ~)2 + (y- 77) 2]/z 0 

Using figure 2, we may next rewrite the integrand in equation (38) as 

a n nor 
- (lnR) = n ° V ~ (lnR) =- 0 V ~ R = -- 0 

dn ~ R ~ R2 

Equation (38) thus becomes 

(36) 

(37) 

(38) 

(39) 

13 



I n·r 
<I>(x) =- R2 ds(~) . 

(Dj 

(40) 

Equation (22) may then be expressed in terms of equations (37) and (40) as 

and (41) 

The integrals in equations (37) and (40) are evaluated using the ideas introduced by Faltinsen.9 

The development that follows is based on the geometry of figure 2. The subscripts L and R , 

respectively, denote the left and right endpoints of the boundary element dDj; s = s(~) and 

n = n(~), respectively, denote the unit tangent and normal to dDj , where s points from ~L to ~R 

and n = k A s points outward to dD j at ( ~' TJ) ; and ( -s,- n) are the components of r relative to 

the basis (s,n). In defining the outward normal n, it is assumed that the boundary element dDj is 

oriented such that, relative to the direction s, the interior of the region D is on the right (see figure 

2). The following relationships are then obtained: 

(42a) 

(42b) 

(42c) 

n=-n·r=-n·rR = -n ·r L, s=-s · r, (42d) 

r = - n n - s s, and R = n2 + s2
• (42e) 

Equation (37) therefore becomes 

14 



y 

X 

Figure 2. Geometry of the Boundary Element ()D J 

SR SR 

'I'(x) =I lnR ds(~) =I ln ~ n 2 + s2 
ds , 

= +R m(n' +s/)-2sR +2ntant:) 
-s, m( n' + s,')+ 2s, -2ntant:)] , 

where s L = -s · r L and s R = - s · r R • The normals may be defined either by n = - n · r L or 

n = - n · r R • Similarly, equation ( 40) becomes 

(43) 
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SR n. r SR n 
<I>(x) =-J-2 ds(~) = J 2 2 ds , 

sL R sL n + s 
(44) 

where the quantities s u s R, and n all depend on x through r L and r R. Of particular interest is the 

evaluationofequation(40)when x=x:, x~ eaD1 , and x: :;t~L or ~R· Oneobtainsdifferent 

values for <I>(x) x-+x. , depending on how the limit x ~ x : is taken. If the point x; is approached 
1 

through positive values of n, then for values of x sufficiently close to x;, it is easy to see 

(sincesL < 0 and sR > 0) that 

<I>(x) = ;r. 
x~x~ 
~o· 

(45) 

If the point x; is approached through negative values of n, then for values of X sufficiently close 

to x; , 

<I>(x) = -;r. (46) 

The limit taken through positive values of n means that x ~ x : from points within D , and, 

likewise, the limit taken through negative values of n means that x ~ x : from points outside D. 

Finally' if the point X~ is approached through points on aD i ' then n = 0 ' and since s L and s R are 

independent of n, we have 

<I>(x) = 0. 
x-H :.,xeJD J 

~o 

(47) 

It is therefore appropriate to assume that when equation (8) is used for the potential ¢, the 

latter of these three approaches is the correct way to evaluate equation ( 40) when x = x : , 

x: E ani' and X~ :;t ~L or ~R . This method of evaluating the limits is consistent with the finite 

dimensional approximation to the flow parameters. In these calculations, x has been explicitly 

restricted to points on dD . The proposed method of evaluating the limit is consistent with 

equation (36). When the control points are chosen to be the midpoints of ani' it can be shown that 

16 



N 

LHiJ=n 
j =l 
) *i 

(48) 

for each fixed value of i, 1 ~ i ~ N. Similar results were also obtained by Nachbin8 while using a 

conjugate harmonic representation for the integrand presented in equation (40). Results from 

boundary integral methods are known to be independent of the choice of boundary collocation 

points or boundary element basis. 
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TEST PROBLEM ALGORITHM 

The accuracy of the proposed method and Green function integrals is tested with a simple 

problem, which is that of potential flow in a fixed, rectangular computational domain. The 

governing equation is the Laplace equation on a ( 0,1) x ( -1,0) rectangular geometry with the 

following boundary conditions: 

¢=2 
¢=2 

arp =O 
dy 
¢=2 

on JDF ={(x,y)ly=O}, 
on dDc

1 
={(x,y)lx=1}, 

on JDD = {(x,y) I y = -1}, 
on JDc

2 
= {(x ,y) I x = o} . 

(49) 

The unique solution to this problem is the constant potential rj>(x,y,t)= 2. To test the applicability 

of the above integral equations, the problem is solved with 10 equally spaced panels on each of the 

four boundaries. Results are presented in figure 3 for control points located at a quarter, mid, and 

three quarters of the panel. As a measure of the accuracy of the numerical solution, we have 

graphed arp; dyl y=O at the collocation (control) points for different partitioning of CJD. The exact 

value is arp Idyl = 0, v X' which is in excellent agreement with the values shown in figure 3' 
y=O 

indicating that the results obtained from these integrals are independent of the location of the 

control points. 

Another issue to be discussed is the accuracy of the numerical method when two adjacent 

panels are of different lengths. It should be noted that the accuracy of the linear panel numerical 

method is usually improved by increasing the number of panels. The question is how to arrange 

the same number of panels in the computational domain so that their physical geometry is 

adequately defined. If the physical domain is properly defined, the length of adjacent panels will 

have negligible effect on the results. In figure 4, the Chebyshev-Gauss-Lobatto points were used 

to define the physical geometry. These points are known to produce a grid that is coarse at the end 

points and sparse at the middle. The control points were placed at the middle of each panel in each 

case presented. Figure 4 shows that despite the fact that the panels were of different lengths, the 

results completely agree with those for the equally spaced panels of figure 3. This indicates that 

the length of adjacent panels does not significantly affect the accuracy of the computational domain. 
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20 

10"6 .-------------------------------------------------------~ 

~Control points at 1/4 of panel 

-Control points at middle of panel 

-B- Control points at 3/4 of panel 

-10-6 L_~~--~~--~~--~-L-1 ~--~~--L_~~--~~--~~--~~ 

0.0 0.2 0 .4 0.6 0.8 1.0 
X 

Figure 3. Computed Values of J¢/ ~ with Different Control Points 

(npl = np2= np3 = np4 = 10; N = 40) 



to-6 ~----------------------------------------------------~ 

--¥--- 5 panels on each side 

_._ 1 0 panels on each side 

---a-- 15 panels on each side 

-to·6 L_~~--~-L~--~~--~~--~~~~--~~~~~~--~~~ 

0 .0 0 .2 0 .4 0 .6 0.8 1 .0 
X 

Figure 4. Computed Values of ()cpj dy with Different Panel Lengths 
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NUMERICAL RESULTS 

Next we consider the numerical solution to the linearized water wave problem as defined by 

the Fredholm integral relation presented in equation (8). To simulate the propagation of an Airy 

wave in the computational domain, the initial value of the velocity potential on the undisturbed free 

surface, obtained from the periodic linear solution, is 

t1>( ) _ HA cosh(k(y+ d)) . (lex ) 
'I' t -- sm -C5t 

2T sinh(kd) 
(50) 

This velocity potential excitation is chosen to correspond to an Airy wave of height H, wavelength 

A., and period T propagating in the positive x-direction. Other parameters are k = 2n /A , which 

represents the wavenumber, and C5 = 2n/T, which is the wave frequency. 

To complete specifications of the boundary value problem, conditions must also be 

specified on the remaining lateral boundaries, aDc
2 

and aDc
1

• For the initial linear solution, the 

Airy wave excitation described by equation (50) is applied on the upstream vertical boundary, and 

spatial and temporal periodicity is maintained on the downstream boundary. For the wave 

excitation described by equation (50), periodicity is achieved by applying the same potential 

downstream. 

Numerically, the free-surface profile and velocity potential must be recovered after every 

period. The governing equation and boundary conditions are to be evaluated using the boundary 

integral methods presented in this memorandum. To advance the solution in time, the fourth-order 

Adams-Bashforth (AB4) method was used. The fourth-order Runge-Kutta (RK4) method was 

also tested and compared to AB4; both methods were shown to give the same results. Since AB4 

only needs calculations from previous time levels and, unlike RK4, does not require solving 

Laplace's equation four times at every time-level, AB4 was found to be more computationally 

efficient and was thus used for the numerical calculations presented in this section. To start the 

solution, the lower order Adams-Bashforth method was used with correction until there was 

enough information to use AB4 without correcting. 

In water wave theory, the free-surface boundary conditions must be satisfied on the free 

surface y = T](x,t), which is a priori unknown. A convenient method for evaluating these 

conditions is to expand them at y = 0 (a known location) by the truncated Taylor series. The 

dynamic free-surface boundary condition, equation ( 6), therefore becomes 
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(51) 

where the pressure is taken to be ambient on the free surface. Retaining the terms that are linear in 

the small parameter 11, and recalling that 11 is only a function of x and t, the linearized dynamic free­

surface boundary condition becomes 

( 
J¢ + gryJ = 0 . 
dt ;=0 

(52) 

The kinetic free-surface boundary condition is similarly linearized to become 

(53) 

Since the linearized equations are applied on the undisturbed free surface y = 0, the entire 

computational boundary is independent of time. Consequently, the influence coefficients in the 

resulting system of linear equations remain unchanged in time. 

Computed free-surface progressions with time for a wave with an amplitude of 0.4 m, 

wavelength of 2.46 m (steepness of 0.33), depth of 4.0 m, and overall axial length of 4 

wavelengths are presented in figure 5. A time step, ..dt of 0.001 s, was used in these simulations. 

The other parameters, such as wave frequency and period, were obtained from the linear water 

wave theory. The results show that the proposed method can obtain wave propagation over a long 

period of time. 

Figure 6 shows results for free-surface progressions near the upstream boundary at x = 

0.44 m, near the center at x = 4.87 m, and near the downstream boundary at x = 9.4 m. Even near 

the boundaries, it is seen that the computed results compare favorably with the exact linear 

solution. 
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Figure 5. Free-Surface Elevations at (a) Time = 0 and (b) Time = 3.3 s 
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Figure 6. Free-Surface Elevations at (a) x = 0.44 m, (b) x = 4.87 m, and 
(c) x = 9.4 m from the Upstream Boundary 



The challenge of the water wave problem is to be able to simulate the fully nonlinear wave. 

The linear study presented in this memorandum involves the first phase of development, which is 

focused on determining the appropriate boundary conditions. Though the free-surface boundary 

conditions are well known, the free surface itself is not defined. Another boundary problem 

concerns the truncated upstream and downstream boundaries. Though these boundaries are 

known, their boundary conditions still remain a major area of research. The actual problem is, in 

fact, due to these boundaries being artificial rather than real; they are there only to truncate the 

computational domain. 

In this work, the upstream boundary (at x = 0) is simulated by a piston wavemaker. A 

velocity potential is therefore applied to this boundary at all times. Although another alternative 

would be to impose the wavemaker velocity on this boundary, the velocity potential alternative is 

preferred here because application of the normal velocity would require a moving upstream 

boundary. A stationary upstream boundary allows one to use a fully Eulerian computational 

scheme. 

For the results presented in figures 5 and 6, the linear theory was used to obtain the 

downstream boundary condition. While this works well for linear waves, convergence problems 

would be expected with nonlinear waves. To achieve a more open downstream boundary 

condition, the Sommerfeld radiation condition is proposed. The radiation condition is derived 

from the wave equation 

(54) 

where ¢ is any quantity and C is the phase velocity of the waves. The above equation can be 

written as 

(55) 

The first term on the left-hand side of equation (55) represents a wave traveling in the positive x­

direction with a speed of C. For this wave, the above equation is solved to give the radiation 

downstream boundary condition as follows: 
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a¢= -ca<P 
ar ax (56) 

Based on the same parameters as those of figure 5, the downstream results from this boundary 

condition, as presented in figure 7, compare favorably to the free-surface progressions of figure 5. 

The radiation boundary condition has been tested with waves of different depth and 

steepness. Results for the wave elevation at fixed axial coordinates with a steepness of 0.33 are 

presented in figure 8. In figure 9, analytical and computed results for a wave with a depth of 2.01 

m and with a steepness of 0.08 are also in good agreement. 
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Figure 7. Free-Surface Elevations at Time = 3.3 s with the Sommerfeld 
Radiation Condition Used at the Downstream Boundary 
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Figure 8. Free-Surface Elevations for a Steepness of 0.33 at (a) x = 0.44 m, 
(b) x = 4.87 m, and (c) x = 9.4 m from the Upstream Boundary with the 

Sommerfeld Radiation Condition Used at the Downstream Boundary 
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In figure 10, the wave was started with the fluid at rest ( ¢> = T] = 0 on y = TJ( x, t)). A 

wavemaker, programmed as in equation (50) to produce an Airy wave, is placed at the upstream 

boundary, and the wave is allowed to propagate freely downstream. The free surface, initially at 

rest, is only developed by the wavemaker. The downstream boundary is four wavelengths from 

the upstream boundary. The water depth is 4 m and the applied upstream Airy wave velocity 

potential has a steepness of 0.33. These are the same parameters as were used in figures 5 and 7. 

The results show that once the wave is developed from the fluid at rest, the boundary integral 

method is able to simulate the wave over a long period of time. 

In figure 10, the wavemaker was positioned upstream throughout the computational period. 

To avoid a velocity potential jump at the upstream/free-surface interface at the beginning of the 

experiment, the wavemaker was started from zero. As can be seen, it took the wavemaker one 

wave period to reach the steady operating condition as defined by the Airy wave. With time, the 

wave excitation on the left boundary produces a wave with a steepness of about 0.33 and a period 

of 1.26 s. These are the same free-surface wave properties obtained from linear theory. 
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Figure 10. Free-Surface Elevations for a Wave Started from Rest at (a) x = 
0.44 m, (b) x = 4.87 m, and (c) x = 9.4 m from the Upstream Boundary with 

the Sommerfeld Radiation Condition Used at the Downstream Boundary 



CONCLUSIONS 

A numerical method for simulating the propagation of steep, transient, linear, free-surface 

water waves has been presented. The method is based on boundary integral relations utilizing 

linear panels, with time marching performed via the fourth-order Adams-Bashforth algorithm. 

This algorithm is preferred because at every time level only one solution to the Laplace equation is 

required. To obtain starting values, a predictor-corrector method was used during the first three 

time levels. The results demonstrate that even with the linear panels and the fluid started from rest, 

the numerical method is capable of tracking the progression of steep, free-surface waves. Also 

observed is a close agreement of these results with the analytical linear solution. 

It is important to note that the proposed method does not depend on water depth or on wave 

properties such as speed or wavelength. This capability for tracking waves generated from rest 

without restrictions on wave properties will be essential in extending the method to the fully 

nonlinear water wave problem. 
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